

产品说明书

YF® Click-iT EdU 流式检测试剂盒

产品货号及规格:

货号	产品名称	规格
C6019S		5T
C6019M	YF® 488 Click-iT EdU 流式检测试剂盒(绿色荧光)	20T
C6019L		50T
C6020S		5T
C6020M	YF® 555 Click-iT EdU 流式检测试剂盒(橙红色荧光)	20T
C6020L		50T
C6021S	YF® 594 Click-iT EdU 流式检测试剂盒(红色荧光)	5T
C6021M		20T
C6021L		50T
C6022S	YF® 647A Click-iT EdU 流式检测试剂盒(远红荧光)	5T
C6022M		20T
C6022L		50T

产品内容:

规格 组分	5T	20Т	50T	保存温度	稳定性
A. 10 mM EdU	100 μL	0.4 mL	1 mL	-20°C	
B. YF® 488/555/594/647A Azide	25 μL	100 μL	250 μL	-20℃,避光	· 按松克洱 麻 伊 左
C. 10× Click-iT EdU 反应缓冲液	500 μL	2×1 mL	5 mL	2-8°C	按指定温度保存 可有效放置一年
D. CuSO ₄	200 μL	0.8 mL	2× 1 mL	2-8°C	1 円有双双直 中
E. Click-iT EdU 缓冲液添加物	15 mg	60 mg	150 mg	2-8°C	

规格:上述反应次数针对6孔板培养的细胞,不同容器的具体用量可参考附表1。

荧光光谱数据: YF® 488 Azide: 495/519 nm; YF® 555 Azide: 555/565 nm;

YF®594 Azide: 590/617 nm; YF® 647A Azide: 650/670 nm.

储存条件

-20℃避光保存,有效期见外包装。开封后,保存温度详见说明书。

产品介绍

细胞增殖检测是评估细胞健康程度、遗传毒性及抗肿瘤 药物效果的基础实验手段。检测细胞增殖最精确的方法是 BrdU法。EdU法检测试剂盒是BrdU法的革命性突破。EdU

US EVERBRIGHT 生物 生物荧光试剂专家

(5-乙炔基-2'-脱氧尿苷)是一种嘧啶类似物,在DNA合成期整合入DNA双链。EdU法检测基于"点击"反应,一种由铜催化的叠氮化合物和炔烃作用发生共价反应,形成共价键。

本试剂盒中,EdU含有炔烃,YF® 488/555/594/647A Azide染料含有叠氮化合物。点击法的EdU标记增殖快速有效,易于使用。BrdU方法需要DNA变性(如酸变性、热变性或者用DNase消化)暴露出BrdU,方便BrdU抗体结合;而EdU法只需标准化的多聚甲醛固定和Triton X-100促渗就可以使检测试剂进入细胞,只需少量的叠氮化染料即可非常有效地标记出整合的EdU。

本试剂盒包含EdU法检测所需要的所有组分,可以用于 体外培养细胞的增殖检测。

使用方法

实验材料(自备)

- 10 mM PBS, pH 7.2-7.6
- 中性多聚甲醛固定液 (in PBS)
- 促渗试剂 (0.5 % Triton X-100 in PBS)
- 1 % BSA in PBS, pH 7.4
- ddH₂O

实验步骤

1. EdU 标记细胞

- (1)每孔 1×10⁵~3×10⁶ 个细胞接种于 6 孔板中,培养至正常状态后进行药物处理或其他刺激处理。
- (2) 培养基稀释 10 mM EdU 至合适浓度, 阴性对照组不用 EdU 处理。
- 注: EdU 的标记浓度需根据细胞类型加以调整,建议以 10 μM 的初始浓度进行摸索。预实验中,建议设置 EdU 浓度梯度,可参考**附表 2** 和**附表 3**。
- (3)细胞培养箱中孵育一段时间。EdU 孵育细胞的时间可以直接用作测定细胞 DNA 合成的指标,时间点选择以及孵育的时间取决于细胞生长速率。通过短暂的 EdU 孵育进行的脉冲式标记细胞可以用于研究细胞周期动力学。

注: EdU浓度与孵育时间相关,短时间孵育(<2 h)宜采用高浓度,如: 10~50 μM;长时间孵育(>24 h)宜采用低浓

度,如:1~10 μM;也可参考**附表3**。

2. 细胞固定及促渗

注:对于需要做细胞表面抗原标记的实验,可以考虑在完成 EdU 孵育后,以含 1% BSA 洗涤细胞 2次,在细胞固定促 渗之前进行。

- (1) 孵育完成后,收集细胞,1% BSA清洗细胞1次,离心收集细胞。
- (2) 100 μL 4% 多聚甲醛重悬细胞。
- (3) 室温避光孵育 15 min。
- (4) 1% BSA 洗涤细胞 2次。
- (5) 100 μL 0.5 % Triton X-100 促渗液重悬细胞,室温孵育 20 min。

3. EdU 检测

注:针对6孔板样本可参考每孔1mL的工作液来进行,用户可以根据自己的样本情况调整用量。

- (1) 配置1× Click-iT EdU反应缓冲液:用ddH₂O将组分C稀释10倍。
- (2)配置 5× Click-iT EdU 缓冲液添加物 (组分 E):加 600 μLddH₂O 至 60 mg 的组分 E 试管中(终浓度 100 mg/mL),混匀至全部溶解。使用后,剩余储液存放在-20℃,可保存一年,溶液一旦呈现棕色,则说明有效成分降解不能再用。注:不同规格的组分 E 均按照此比例加 ddH₂O 溶解为 5× 储液备用。对于 50T 的规格,需添加 1.5 mL ddH₂O。
- (3) 准备1× Click-iT EdU缓冲液添加物:以ddH₂O稀释5× Click-iT EdU缓冲液添加物储液至1×,溶液应现配现用。
- (4) 依据表 1 准备 Click-iT 工作液。

表 1: Click-iT 工作液

反应组分	单次反应所需 加液体积
1× Click-iT EdU 反应缓冲液	875 μL
CuSO ₄ (组分 D)	20 μL
YF® 488/555/594/647A Azide(组分	5 μL
B)	
1× Click-iT EdU 缓冲液添加物	100 μL
总体积	1 mL

UE 百赛 US EVERBRIGHT 生物荧光试剂专家

- (5) 每管加入 1 mL Click-iT 工作液,混匀。
- (6) 室温避光孵育 30 min。
- (7) 1% BSA 洗涤细胞 1 次, 收集细胞, 用 1 mL 1 % BSA 再次重悬细胞(重悬细胞的溶液体积可根据细胞的数量加以调整),流式细胞仪检测。
- 注: 如需进行其他标志物检测可参考步骤 4。
- 4. 细胞内抗原标记(可选步骤)

- (1) 加入抗体工作液,混匀。
- (2) 避光条件下,以合适的温度及时间孵育抗体。

5. DNA 含量计算(可选步骤)

- (1) 如有需要,可加入适量 RNase 至每管,混匀。
- (2) 每管加入适量 DNA 染色液, 避光孵育 10-15 min。
- (3) 上机待检。

附录:

附表 1. EdU 培养基及染色反应液的参考使用量

	96 孔板*	48 孔板	24 孔板	12 孔板	6 孔板	5.5 cm 小皿
EdU 培养基	100 μL	150 μL	200 μL	500 μL	1 mL	2 mL
染色反应液	100 μL	150 μL	200 μL	500 μL	1 mL	2 mL

注: (1)*表示贴壁细胞通常采用的培养容器, EdU 培养基和染色反应液用量以覆盖细胞为宜; (2)悬浮细胞 EdU 用量依据培养体积而定。

附表 2. EdU 的参考孵育时间

细胞系	人胚胎细胞	酵母细胞	鼠成纤维细胞	人宫颈癌细胞	人胚肾细胞系	人神经细胞
细胞周期	~30 min	~3 h	~18 h	~21 h	~25 h	~5 d
孵育时间	5 min	20 min	2 h	2 h	2 h	1 d

- 注: (1) EdU 孵育时间取决于细胞周期,一般为细胞周期的 1/10 至 1/5,但大多数细胞系均可采用 2h 孵育时间;
 - (2) 考虑到细胞培养基、温度、湿度、光线等其他因素的影响,细胞周期会有所变化。

附表 3. 文献中 EdU 孵育浓度及时间

PubMed ID	Reference	Cell Line	Concentration	Time
18272492	Salic A,et al.PNAS.2008	NIH3T3,Hela	10 nM~10 μM	1 h
18521918	Cappella P, et al. Cytometry A.2008	HL-60,A2780,U2OS	1~10 μM	0.5 h
18996411	Chehehasa F, et al. Neurosci Methods. 2009	Neurospheres	1~20 μM	24 h
19179371	Limsirichaikul S, et al. Nucleic Acids Res. 2009	Primary fibroblasts	10 μΜ	1,2,4 h
19253396	Warren M, et al. Dev Dyn.2009	Chick embryos	10 μM~2 mM	4 h
19647746	Yu Y, et al. J Immunol Methods.2009	Spleen cells	50 μΜ	24 h
19544417	Momcilovic O, et al.Stem Cells.2009	Human ES cells	10 μΜ	0.5 h
20080700	Cinquin O, et al. PNAS.2010	emb-30	1 μΜ	12 h
20025889	Han W, et al. Life Sci.2009	VSMC	50 μΜ	2 h
20659708	Huang C, et al. J Genet Genomics.2010	ESC	50 μΜ	2 h
21310713	Hua H, et al. Nucleic Acids Res.2011	Fission yeaststrains	10 μΜ	3 h

UF 百赛 US EVERBRIGHT 生物荧光试剂专家

20824490	Lv L, et al. Mol Cell Biochem. 2011	EJ cells	50 μΜ	4 h
21248284	Yang S, et al.Biol Reprod.2011	GC cells	50 μΜ	2 h
21227924	Zhang YW, et al. Nucleic Acids Res.2011	U2OS, HT29	30 μΜ	1.5 h
21829621	Guo T, et al. PloS One. 2011	HIT-T15	50 μΜ	4 h
21980430	Zeng T, et al. PloS One. 2011	MCF-10A	25 μΜ	2 h
22012572	Ding D, et al.Int Orthop.2011	C3H10T1/2	10 μΜ	24 h
22000787	Zeng W, et al. Biomaterials.2011	EPC	50 μΜ	4 h
21913215	Xue Z, et al. J Cell Biochem.2011	SGC7901	25 μΜ	24 h
22016038	Peng F, et al.Lasera Med Sci.2011	MSC	50 μΜ	2 h
21878637	Li D, et al. J Biol Chem.2011	НСС	50 μΜ	2 h

